Generalized Ulam-Hyers-Rassias stability of a Cauchy type functional equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Hyers - Ulam - Rassias Stability of a Quadratic Functional Equation

In this paper, we investigate the generalized Hyers-Ulam-Rassias stability of a new quadratic functional equation f (2x y) 4f (x) f (y) f (x y) f (x y) + = + + + − −

متن کامل

Hyers–ulam–rassias Stability of a Generalized Pexider Functional Equation

In this paper, we obtain the Hyers–Ulam–Rassias stability of the generalized Pexider functional equation ∑ k∈K f(x+ k · y) = |K|g(x) + |K|h(y), x, y ∈ G, where G is an abelian group, K is a finite abelian subgroup of the group of automorphism of G. The concept of Hyers–Ulam–Rassias stability originated from Th.M. Rassias’ Stability Theorem that appeared in his paper: On the stability of the lin...

متن کامل

A new type of Hyers-Ulam-Rassias stability for Drygas functional equation

In this paper, we prove the generalized Hyers-Ulam-Rassias stability for the Drygas functional equation$$f(x+y)+f(x-y)=2f(x)+f(y)+f(-y)$$ in Banach spaces by using the Brzc{d}ek's fixed point theorem. Moreover, we give a general result on the hyperstability of this equation. Our results are improvements and generalizations of the main result of M. Piszczek and J. Szczawi'{n}ska [21].

متن کامل

Hyers-Ulam-Rassias stability of generalized derivations

One of the interesting questions in the theory of functional equations concerning the problem of the stability of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation? The first stability problem was raised by Ulam during his talk at the University of Wisconsin in 194...

متن کامل

Hyers-ulam Stability of Butler-rassias Functional Equation

In 1940, Ulam [9] gave a wide ranging talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the following question concerning the stability of homomorphisms. Let G1 be a group and let G2 be a metric group with a metric d(·,·). Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 satisfi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proyecciones (Antofagasta)

سال: 2013

ISSN: 0716-0917

DOI: 10.4067/s0716-09172013000100002